Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-90879.v1

ABSTRACT

BackgroundRemote Australian Aboriginal and Torres Strait Islander communities have potential to be severely impacted by COVID-19, with multiple factors predisposing to increased transmission and disease severity. Our modelling aims to inform optimal public health responses. MethodsAn individual-based simulation model represented communities ranging from 100 to 3,500 people, comprised of large interconnected households. A range of strategies for case finding, quarantining of contacts, testing, and lockdown were examined, following the silent introduction of a case.ResultsMultiple secondary infections are likely present by the time the first case is identified. Quarantine of close contacts, defined by extended household membership, can reduce peak infection prevalence from 60-70% to around 10%, but subsequent waves may occur when community mixing resumes. Exit testing significantly reduces ongoing transmission. Concurrent lockdown of non-quarantined households for 14 days is highly effective for epidemic control and reduces overall testing requirements; peak prevalence of the initial outbreak can be constrained to less than 5%, and the final community attack rate to less than 10% in modelled scenarios. Lockdown also mitigates the effect of a delay in the initial response. Compliance with lockdown must be at least 80-90%, however, or epidemic control will be lost.ConclusionsA SARS-CoV-2 outbreak will spread rapidly in remote communities. Prompt case detection with quarantining of extended-household contacts and a 14-day lockdown for all other residents, combined with exit testing for all, is the most effective strategy for rapid containment. Compliance is crucial, underscoring the need for community supported, culturally sensitive responses.  


Subject(s)
COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.07.20208819

ABSTRACT

Background Remote Australian Aboriginal and Torres Strait Islander communities have potential to be severely impacted by COVID-19, with multiple factors predisposing to increased transmission and disease severity. Our modelling aims to inform optimal public health responses. Methods An individual-based simulation model represented communities ranging from 100 to 3,500 people, comprised of large interconnected households. A range of strategies for case finding, quarantining of contacts, testing, and lockdown were examined, following the silent introduction of a case. Results Multiple secondary infections are likely present by the time the first case is identified. Quarantine of close contacts, defined by extended household membership, can reduce peak infection prevalence from 60-70% to around 10%, but subsequent waves may occur when community mixing resumes. Exit testing significantly reduces ongoing transmission. Concurrent lockdown of non-quarantined households for 14 days is highly effective for epidemic control and reduces overall testing requirements; peak prevalence of the initial outbreak can be constrained to less than 5%, and the final community attack rate to less than 10% in modelled scenarios. Lockdown also mitigates the effect of a delay in the initial response. Compliance with lockdown must be at least 80-90%, however, or epidemic control will be lost. Conclusions A SARS-CoV-2 outbreak will spread rapidly in remote communities. Prompt case detection with quarantining of extended-household contacts and a 14-day lockdown for all other residents, combined with exit testing for all, is the most effective strategy for rapid containment. Compliance is crucial, underscoring the need for community supported, culturally sensitive responses.


Subject(s)
COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.07.20056184

ABSTRACT

Background The ability of global health systems to cope with increasing numbers of COVID-19 cases is of major concern. In readiness for this challenge, Australia has drawn on clinical pathway models developed over many years in preparation for influenza pandemics. These models have been used to estimate health care requirements for COVID-19 patients, in the context of broader public health measures. Methods An age and risk stratified transmission model of COVID-19 infection was used to simulate an unmitigated epidemic with parameter ranges reflecting uncertainty in current estimates of transmissibility and severity. Overlaid public health measures included case isolation and quarantine of contacts, and broadly applied social distancing. Clinical presentations and patient flows through the Australian health care system were simulated, including expansion of available intensive care capacity and alternative clinical assessment pathways. Findings An unmitigated COVID-19 epidemic would dramatically exceed the capacity of the Australian health system, over a prolonged period. Case isolation and contact quarantine alone will be insufficient to constrain case presentations within a feasible level of expansion of health sector capacity. Overlaid social restrictions will need to be applied at some level over the course of the epidemic to ensure that systems do not become overwhelmed, and that essential health sector functions, including care of COVID-19 patients, can be maintained. Attention to the full pathway of clinical care is needed to ensure access to critical care. Interpretation Reducing COVID-19 morbidity and mortality will rely on a combination of measures to strengthen and extend public health and clinical capacity, along with reduction of overall infection transmission in the community. Ongoing attention to maintaining and strengthening the capacity of health care systems and workers to manage cases is needed.


Subject(s)
COVID-19 , Infections
SELECTION OF CITATIONS
SEARCH DETAIL